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Abstract  Microbial source tracking (MST) is a still-new and emerging sub-discipline 
of Biology that allows practitioners to discriminate among the many possible 
sources of fecal pollution in environmental waters. MST’s current and potential 
applications range from beach monitoring to total maximum daily load (TMDL) 
assessment of pollution sources, that in turn will mediate greater protection of 
public health and improvement of environmental water quality. This comprehen-
sive book taps the expertise of many of the leading research scientists from an 
international assemblage, and contains chapters that range from China and devel-
oping nations (22) to New Zealand and Australia (21), plus the EU and USA. The 
book addresses subjects ranging from the fundamentals of performance criteria 
during method development (2), library-dependent (3) and library-independent 
(4) approaches with their pros and cons, and applications to case studies from 
agricultural (18), urban (19), and beach (20) watersheds. Separate chapters focus 
on viral (5), bacteriophage (6), protozoan (7), chemical (8), mitochondrial DNA 
(10), and community analysis (11) -based methods. Chapters that relate MST to 
the fecal indicator bacteria (15), determining when and where to use MST (16), 
and the environmental persistence of fecal bacteria (17) put MST in the context of 
environmental monitoring. Specialized topics include legal (13) and TMDL (14) 
-associated issues, public perceptions (12), statistical analysis (9), national security 
(23), risk assessment (24), food safety (25), and using MST in undergraduate 
education (26). We hope that this book will prove useful to new practitioners of 
MST as well as established researchers and scientists and that it will serve as a 
valuable reference for many years to come.

Keywords  Source tracking methods  •  Case studies  •  Environmental persist-
ence  •  Performance criteria  •  Monitoring and assessment  •  Water quality  •  Fecal 
indicator bacteria  •  Microbial tracers  •  Chemical tracers

C. Hagedorn (*) 
Department of Crop and Soil Environmental Sciences,  
401 Price Hall, Virginia Tech, Blacksburg, VA 24061, USA 
e-mail: chagedor@vt.edu

Chapter 1
Overview

Charles Hagedorn, Valerie J. Harwood, and Anicet R. Blanch 
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The progressive improvement of strategies for management of microbial quality of 
catchments during the last two centuries has played an essential role in the 
improvement of public health in human societies. The definition and implementa-
tion of microbial indicators to survey water quality and assess reductions in micro-
bial pathogens of fecal origin have proven to be a practical and efficient measure 
for the protection and improvement of water resources. The citizens of developed 
countries are generally protected by legislation and regulations regarding water 
quality for many purposes, such as drinking, personal hygiene, recreational activities, 
agriculture watering, and food production. However, waterborne disease outbreaks 
remain an enormous burden in developing countries where management of water 
resources with the aim of reducing microbial contaminants is rare or nonexistent 
(Chap. 22).

It is important to understand that measurements of fecal indicator bacteria (FIB) 
for water quality do not provide information about the origin of fecal pollution, 
i.e., whether the host source is, for example, birds, dogs, cattle, or humans – or a 
combination of any of these. This limitation exists because the feces of most animals 
contain FIB concentrations that are great enough to affect water quality when many 
animals or their sewage impact a water body (Chap. 14). The detection of the origin 
of fecal pollution is assuming a prominent place in hazard identification related to 
host-specific pathogens (Chap. 24). Pathogens from infected animals or humans 
can be introduced into water resources through feces or sewage and can cause a 
human health risk. The identification of the fecal sources is important to protect the 
public from zoonotic pathogens that may be shed by animals such as wild birds, 
poultry, cattle, and pigs. The capability to detect human-source pollution is also 
crucial to management strategies, as sewage from human origin is generally 
expected to have a higher risk to public health than that of animal origin (Chap. 15). 
Consequently, understanding the origin of fecal pollution is essential in assessing 
potential human health risks as well as for determining the actions necessary to 
remediate the quality of waters contaminated by fecal matter.

The intensive research efforts directed at developing methods for detection of 
fecal pollution originated over the past few decades and have been grouped under 
the term microbial source tracking (MST). These studies began in the early 1980s 
(Geldreich 1976; Mara and Oragui 1981; Osawa et  al. 1981; Mara and Oragui 
1983), probably as a result of social and legal pressures. The term MST denotes 
procedures that use host-specific (found only in one host species or group) and 
host-associated (largely confined to one host species or group) microbial indicators 
to establish the origin of fecal pollution in water. From its inception, MST has 
experienced rapid growth in knowledge and technological capabilities, including 
PCR and quantitative PCR that have substantially augmented the established 
research field of water-quality microbiology.

The history of MST research could be divided into several phases. Phase 1 was the 
initial phase, when defining new indicators (Brown 1993; Awad-El-Kariem et al. 1995; 
Hsu et al. 1995; Tartera et al. 1989; Bernhard and Field 2000; Nebra et al. 2003) and 
appropriate methods for source discrimination (Hagedorn et al. 1999; Wiggins 1996; 
Parveen et al. 1997; Whitlock et al. 2002; Harwood et al. 2000; Manero et al. 2002; 
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Wallis and Taylor 2003) were emphasized. In response to the emergence of MST as a 
potential regulatory strategy, Phase 2 saw three large multilaboratory method comparison 
studies (two in USA and one in Europe) plus numerous workshops, book chapters, 
and review articles dedicated to synthesizing information on the topic (Field et al. 
2003; Harwood et al. 2003; Griffith et al. 2003; Myoda et al. 2003; Noble et al. 2003; 
Ritter et al. 2003; Blanch et al. 2004; Blanch et al. 2006). Furthermore, a federal (US 
EPA) guide document that described the uses and limitations of MST methods was 
published in 2005 (US Environmental Protection Agency 2005), and a book dedi-
cated to MST as an emerging issue in food safety was published in 2007 
(SantoDomingo and Sadowsky 2007). Over the past ten years, library-dependent 
MST methods (Chap. 3), which require a large assemblage of typed organisms from 
various host sources, have been largely supplanted by library-independent methods 
(Chap. 4) that rely on detection of a particular host-specific organism or gene.

To date, there has been no widespread consensus among researchers or any 
regulatory agency regarding the best indicators for MST. Many studies still focus 
exclusively on the development of new MST indicators and the improvement of 
their methods of detection and quantification (Chaps. 3–8 and 10). These docu-
ments cited above provide a collective body of literature on MST that, although 
frequently complementary, is at times conflicting, repetitious, and difficult to con-
dense and interpret. In addition, they do not reflect the current diversity of MST 
approaches with different organisms, newer methodologies such as quantitative 
PCR and anthropogenic chemicals, nor do they reflect the scope of MST research 
being conducted around the world (Chaps. 21 and 22).

The goal of this book is to serve as a valuable reference for all those who are 
involved with water quality, whether they are students, researchers, managers, or 
regulators. This book also aims to be the first comprehensive source to present the 
MST spectrum at the international level and to act as a future guide for researchers 
who need to use, apply, and interpret MST in all manner of watershed environments. 
For that reason, the editors have intentionally sought out authors who collectively 
represent a comprehensive expertise and whose work reflects the rich diversity and 
truly international scope of MST.

The unifying theme throughout the book is the design of more standardized 
approaches to MST that include performance criteria, regardless of method or organ-
ism (Chap. 2), plus recommendations for field study design and MST implementation 
(Chaps. 14 and 16). The content is structured in four sections to facilitate the search of 
topics and practical reading. The first is a “Method Development” section that includes 
a wide spectrum of different fecal source indicators that have been or are being 
developed. Here, readers can find not only the current state of the science for these 
indicators but also the historical track, present challenges, and future perspectives.

Microbial indicators based on the detection of bacteria or their components, e.g., 
genes, are described in two chapters that are delineated by the method’s dependence 
(Chap. 3) or independence (Chap. 4) on reference libraries composed of typed 
organisms from various host sources (library-dependent and library-independent 
methods). Different approaches are also discussed and compared, including require-
ments for cultivation and the dependence on a priori developed reference libraries. 
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Other proposed MST indicators are also considered in detail within this section, 
i.e., viruses (Chap. 5), bacteriophages (Chap. 6), and protozoa (Chap. 7). The advan-
tages and challenges for these microbial groups are analyzed, and the potential for 
practical applications is also explained. Moreover, chemical and eukaryotic (mito-
chondrial) indicators that have been developed and evaluated for MST uses also have 
their respective chapters (Chaps. 8 and 10), where advantages and drawbacks are also 
identified, and new perspectives are indicated. This section also includes three 
chapters for specific topics that are essential to implement of MST indicators and 
to evaluate their feasibility for routine analyses. To that end, performance criteria 
(Chap. 2), statistical approaches and modeling (Chap. 9), and the development of 
community-analysis-based methods (Chap. 11) each have a dedicated chapter.

Indicators, the methods used to detect and/or quantify them, and the appropriate 
performance characteristics need to be applied, understood, and properly interpreted 
by scientists, managers, and regulators who work on catchment management.  
The second section of the book covers “Use, Interpretation, and Application” and 
includes chapters on the public understanding of MST (Chap. 12), legal challenges 
(Chap. 13), and the use of MST indicators on the determination of the total load of 
fecal pollution that could support a catchment (i.e., TMDL) based primarily on the 
development of models for this purpose (Chap. 14). The relationship of MST indi-
cators with respect to other standardized and routine microbiological parameters 
(i.e., microbial indicators and pathogens) that are used for water-quality manage-
ment is also described in a specific chapter (Chap. 15). Designing representative 
sampling schemes and a decision-based matrix for when to use, or not use, MST 
are also included (Chap. 16). Lastly, this section includes a chapter on the persis-
tence of indicator organisms in aquatic environments and sediments and sands, a 
very timely emerging issue (Chap. 17).

The third section is dedicated to “MST Case Studies.” Field studies on 
agricultural and rural watersheds from different geographical areas are described, 
and implications for catchment management are discussed (Chap. 18). Many 
practical aspects of MST conducted in different geographic regions are described. 
Some are related to agricultural and rural watersheds (surface and karstic ground-
water resources) but others to urban and suburban watersheds (Chap. 19). There is 
a chapter committed to the rationale for using microbial source tracking (MST) 
methods at beach sites and coastal water bodies (Chap. 20) and the use of MST 
methods for evaluating waters impacted by nonpoint sources of pollution. This 
chapter also describes the most common traditional and alternative MST markers 
used at beach sites. Lastly, this section contains two chapters outlining experiences 
and case studies on the application of MST methods in waterways in Australia and 
New Zealand (Chap. 21), and in China and developing countries (Chap. 22). The vast 
differences in the use of MST between developed and developing nations are readily 
apparent in these two final chapters of Sect. 3.

Finally, the fourth section is dedicated to the “Future Needs and Perspectives for 
MST Development.” including more widespread application of MST on water 
management decisions. Issues and aspects of MST as related to national security 
(Chap. 23), quantitative risk assessment (Chap. 24), and food safety (Chap. 25) are 
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all presented. Lastly, a chapter on education presents some available training 
resources for future scientists and technical staff and demonstrates how MST can 
be a component of undergraduate education in both the four-year and community 
college settings (Chap. 26).

We hope that this book will prove useful to new practitioners of MST as well as 
established researchers and scientists and that it will serve as a starting point into 
this fascinating area of MST that merges basic and applied science, field work and 
laboratory studies, theory and practicality, as well as any scientific endeavor in 
modern biology. We trust that this book will need substantial revision at some point 
as the field of MST continues to grow and that it will serve as a valuable reference 
for many years to come.

We are grateful to Andrea Macaluso (editor at Springer-US), who first proposed 
to us the idea of an interdisciplinary MST book. We especially acknowledge all the 
authors for their dedication and contribution and their efforts to relate the different 
chapters to each other. This greatly simplified the always-complex process of editing 
a book with many highly qualified authors who are experts in the wide range of 
topics covered in this book.
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Abstract  The establishment of rigorous, consistent performance criteria for 
microbial source tracking (MST) methods is essential for their usefulness and 
widespread acceptance as research and regulatory tools. In this chapter, we focus 
on performance criteria for library-independent methods, although many aspects 
of the discussion are applicable to both library-independent and library-dependent 
methods. We separate these criteria into three levels for ease of discussion: (1) the 
intrinsic characteristics of the “marker” (target), (2) protocols for generating labo-
ratory data, and (3) field applications. By ensuring that a consistent set of metrics 
for characteristics such as accuracy and precision be applied to field studies and 
published works, we can begin to circumscribe the set of MST tools that will be 
most useful for discriminating among fecal pollution sources in environmental 
waters.

Keywords  qPCR  •  Performance  •  Efficiency  •  Accuracy  •  Precision  •  Error

2.1 � Introduction

The nascent field of microbial source tracking has relied upon both library-
dependent and library-independent approaches (see Chaps. 3 and 4, respectively) 
to detect fecal contamination from particular hosts. In particular, the library-
dependent approach experienced a high level of application in first five or so years 
of the 21st century, which included the introduction of statistical methods such as 
discriminant analysis (Wiggins 1996), principle components analysis (Dombek 
et al. 2000), or nearest-neighbor analysis (Albert et al. 2003; Ritter et al. 2003; 
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Robinson et  al. 2007) to evaluate complex patterns generated by antibiotic 
resistance analysis (Hagedorn et al. 1999; Harwood et al. 2000; Wiggins 1996), 
rep-PCR (Carson et al. 2003; Dombek et al. 2000; McLellan et al. 2003), pulsed-
field gel electrophoresis (Myoda et al. 2003), ribotyping(Parveen et al. 1999), and 
other methods. The validity of results from these library-dependent methods began 
to be questioned following proficiency testing with blind samples (Griffith et al. 
2003; Harwood et al. 2003; Stoeckel et al. 2004). Other pressing concerns with 
library-dependent methods include the size and scope required for a “representa-
tive” library and concerns about broad geographic applicability and temporal 
stability (Stoeckel and Harwood 2007; US Environmental Protection Agency 2005; 
Wiggins et al. 2003).

As a result of these findings and concerns, library-independent methods, many 
of which showed better accuracy in limited proficiency testing compared with the 
library-dependent methods (Griffith et al. 2003; Harwood et al. 2003; Myoda et al. 
2003), began to be more intensively developed and used in field studies. As was 
done with library-dependent methods, as these methods and markers emerge they 
should be routinely validated for provision of accurate results. The purpose of this 
chapter is to outline a strategy for method validation and proficiency testing that is 
applicable to library-independent MST methods, many of which utilize PCR and/
or quantitative PCR (qPCR) to detect a host-associated target organism or gene. By 
establishment of rigorous performance criteria and application of proficiency tests, 
MST methods will be evaluated within a consistent framework, paving the way for 
more confident use in regulatory and legal contexts.

This chapter considers performance of MST methods separately at three  
levels – the genetic target or “marker,” since interpretation of MST data for fecal 
source indication is dependent upon marker characteristics (sensitivity and specific-
ity within the target population); the protocol for generating laboratory data, 
since without confidence in the data results cannot be interpreted; and field appli-
cation, since interpretation of data collected from uncontrolled settings poses 
additional challenges beyond basic laboratory quality control. In this chapter, we 
use “performance” when referring to inherent characteristics of the method, e.g., 
sensitivity, specificity, evenness; and “proficiency” when referring to testing that 
is specifically designed to evaluate the quality and reliability of laboratory-
generated data.

The use of common performance measures and validation strategies in the many 
studies that are expected over the next decade should facilitate rapid progress in this 
area, as we continue to work toward availability of reliable analyses, classification 
approaches, and interpretation strategies for tracking fecal contamination to its 
sources by use of MST tools. Although we focus here on methods that target specific 
genes via PCR, the general strategies and most of the considerations discussed here 
apply in some measure to all of the methodologies discussed in this book (see 
Chaps. 3 and 9 for criteria that are more appropriate for library- and chemical-based 
methods, respectively).
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2.2 � Evaluation of Target (MST Marker) Performance  
and Suitability

The various markers used for library-independent MST detect the presence of 
host-associated microbial populations. Sensitivity, or completeness of marker 
representation in the host population, along with specificity, or exclusivity of the 
host–microbe association, are critically important parameters (Table 2.1) (Stoeckel 
and Harwood 2007). Relatively poor sensitivity, which is associated with low-
prevalence markers such as those that detect some pathogenic viruses (Noble et al. 
2003; Stoeckel and Harwood 2007), frequently causes false-negative results. 
Incomplete specificity, which is associated with many existing genetic markers 

Table 2.1  Characteristics of an ideal vs. a useful MST marker (Harwood 2007; US Environmental 
Protection Agency 2005)

Characteristic Ideal marker Useful marker

Specificity Marker found only in target 
host species

Marker is differentially distributed 
among host species

Distribution in  
host population

Found in all members of all 
populations of target host  
species; contributes to  
sensitivity of method

Consistently found in host species 
whose feces could impact the 
target sites

Evenness Quantity in the feces of individuals 
is similar

Quantity in aggregate sources, 
e.g., sewage influent; animal 
populations, is similar

Temporal stability  
in host

Frequency and concentration in  
host individuals and popula- 
tions does not change  
over time

Despite variation in marker 
frequency and concentration in 
individuals, these characteristics 
are stable at the population level

Geographic range/
stability

The frequency and concentration  
in geographically separated  
host populations are similar

The marker can consistently be 
detected and quantified across 
the geographic area to be studied

Environmental 
persistence

Consistent decay rate in various 
matrices and habitats; no  
increase under any conditions; 
response to treatment processes 
and environmental insults is 
similar to that of pathogens

Predictable decay rate in various 
matrices and habitats; no 
increase under ambient 
conditions; response to treatment 
processes and environmental 
insults is characterized

Quantitative 
assessment

Can be accurately quantified Accurately indicates presence/
absence of contamination source

Relevance to 
regulatory 
parameters

The marker is derived from an 
organism that is a regulatory  
tool

The marker is correlated with an 
organism that is a regulatory tool

Relevance to  
health risk

The marker is strongly correlated 
with risk of all types of 
waterborne disease, e.g., 
gastroenteritis, dermatitis, 
upper respiratory infections

The marker constitutes a health risk 
or is otherwise correlated with 
a subset of waterborne disease, 
e.g., viral gastroenteritis
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(Harwood et  al. 2009; Korajkic et  al. 2009; Shanks et  al. 2010), can cause 
false-positive results. The third major issue relevant to performance measurement 
for markers is evenness of marker distribution (in terms of prevalence and quantity), 
which applies both among populations and among individuals within a given host 
population. If the evenness of the marker is different from the evenness of fecal 
indicator bacteria or pathogens, then simple detection or even quantification of the 
marker may not be directly comparable to existing regulations or public health risk 
outcomes. These considerations are discussed in detail below.

2.2.1 � Choosing the Tool(s) to Fit the Question

Potential applications of MST include (a) assessment of sources of fecal contamina-
tion in recreational or drinking source waters, (b) prioritization of impaired water 
bodies for total maximum daily load (TMDL) implementation or other interven- 
tions, (c) source apportionment for TMDL plans, and (d) forensic applications, i.e., 
assigning (or relieving) responsibility for pollution. The goals of a given study must 
be carefully considered when choosing or designing MST marker(s), and deciding 
whether conventional (presence/absence) PCR-based methods are sufficient or if 
quantitative PCR (qPCR) is required. For example, if one is most concerned about 
determining when and where contamination from human sources is present, a suite of 
human-specific markers may be chosen, and conventional PCR may be sufficient to 
achieve the study goals. If, however, one is attempting to apportion contributions from 
various fecal sources for TMDL applications, it would be necessary to use a suite of 
markers for the identified sources of fecal loading, and qPCR would be required.

Many authors have recommended toolbox or tiered approaches for MST study 
design, the first meaning that a group of MST methods is on hand and ready for 
deployment as the specific situation demands and the second meaning that lower 
cost methods that broadly measure contamination, such as conventional fecal indi-
cator bacteria measurements, are used first, followed by more expensive, technically 
demanding methods such as PCR where they are needed to accomplish specific 
goals (Boehm et al. 2003; Lu et al. 2009; McQuaig et al. 2006; Noble et al. 2006; 
Vogel et  al. 2007) (see also Chaps. 16 and 19). Another aspect of the toolbox 
approach is that multiple methods for detection of contamination from one source 
can be used to support one another (see below), alleviating the uncertainty that 
results from imperfections in all methods reported to date. On the contrary, the use 
of multiple tests increases the cost of a given study and can be unacceptably expen-
sive for end users such as regulatory agencies. This situation can be a particular 
concern when multiple methods are used to identify one source.

One must also consider the performance characteristics of the methods and how 
they might affect interpretation of the results; for example, one could use a human-
associated marker with high concentration in sewage but incomplete specificity to 
minimize the probability of false-negative results. Because use of such a marker could 
yield false-positive results, one might also use a highly human-specific marker that 
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